Xét các số phức z thỏa mãn |z+1+i| = 3.Đặt w = z + 2i -3. Tìm Max |w|
A. Max = 9
B.Max = 8
C. Max = 6
D. Max =5
Các số phức z, w thay đổi nhưng thỏa mãn |z + i – 2i| = 1 và |w - 3 + i| = 3. Tìm |z - w|max
A. |z - w|max = 2.
B. |z - w|max = 4.
C. |z - w|max = 9.
D. |z - w|max = 10.
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Cho số phức thỏa mãn 1 + i z + 2 + 1 + i z - 2 = 4 2 Gọi m = m a x z ; n = m i n z và số phức w = m + ni Tính w 2018
A. 4 1009
B. 5 1009
C. 6 1009
D. 7 1009
Biết z ∈ ℂ thỏa mãn |z-1+2i| = 3. Tìm Max|z|.
A. Max|z| = 1
B. Max|z| = 2
C. Max|z| = 3 + 5
D. Max|z| = 3
Cho hai số phức z, w thỏa mãn | z - 3 - 2 i | ≤ 1 | w + 1 + 2 i | ≤ | w - 2 - i | . Tìm gía trị nhỏ nhất P m i n của biểu thức P = |z-w|.
A . P m i n = 3 2 - 2 2
B . P m i n = 2 + 1
C . P m i n = 5 2 - 2 2
D . P m i n = 2 2 + 1 2
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3