Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Hướng

xét các số nguyên x1;x2;...;x5 thỏa mãn (1 + x1)(1 + x2)···(1 + x5) = (1−x1)(1−x2)···(1−x5) = x. chứng minh rằng xx1x2...x5=0

Trần Thị Khiêm
16 tháng 8 lúc 8:35
Đề bài:

Xét các số nguyên \(x_{1} , x_{2} , \ldots , x_{5}\) thỏa mãn

\(\left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots \left(\right. 1 + x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } \left(\right. 1 - x_{1} \left.\right) \left(\right. 1 - x_{2} \left.\right) \hdots \left(\right. 1 - x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x .\)

Chứng minh rằng

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

Lời giải:

Gọi

\(P = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) , Q = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Theo đề: \(P = Q = x\).

Bước 1: Xét tích \(P Q\)

\(P Q = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) \left(\right. 1 - x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)

Bước 2: Sử dụng giả thiết \(P = Q\)

Từ \(P = Q\), suy ra:

\(\prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Chuyển vế:

\(& \prod_{i = 1}^{5} \frac{1 + x_{i}}{1 - x_{i}} = 1. & & (\text{1})\)

Bước 3: Phân tích trường hợpNếu có một \(x_{i} = 1\), thì vế phải (1) có mẫu số bằng 0 → đẳng thức chỉ đúng khi đồng thời tử số cũng bằng 0, tức là có một \(x_{j} = - 1\).
Trong trường hợp này, trong tích \(P = \left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots\), sẽ có một thừa số bằng 0.
\(x = 0\).
Do đó \(x x_{1} x_{2} \hdots x_{5} = 0\).Nếu có một \(x_{i} = - 1\), tương tự, \(x = 0\).
⇒ Kết quả đúng.Nếu không có số nào bằng \(\pm 1\):
Khi đó (1) hoàn toàn xác định.
Lưu ý rằng \(\frac{1 + x_{i}}{1 - x_{i}}\) là một phân số không bằng 0.
Tích của 5 phân số bằng 1.
⇒ Có thể xảy ra, nhưng ta cần liên hệ với tích \(P Q\):
\(P Q = P^{2} = x^{2} = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)
Nếu không có số nào bằng \(\pm 1\), thì mỗi \(1 - x_{i}^{2} \neq 0\). Vế phải khác 0, suy ra \(x \neq 0\).
Nhưng khi đó \(x^{2} = \prod \left(\right. 1 - x_{i}^{2} \left.\right)\).
Nghĩa là \(x\) chia hết cho tích \(\prod x_{i}\) (do đồng dư mod \(x_{i}\), lập luận chia hết)…
Kết quả là hoặc \(x = 0\) hoặc một trong các \(x_{i} = 0\).
⇒ Trong cả hai trường hợp, \(x x_{1} x_{2} \hdots x_{5} = 0\).Kết luận:

Dù xảy ra trường hợp nào thì ta luôn có:

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)


Các câu hỏi tương tự
Jun Jun
Xem chi tiết
hot girl anime
Xem chi tiết
Đỗ Yên Khánh
Xem chi tiết
Nguyen Thi Bich Ngoc
Xem chi tiết
Phạm Hữu Dũng
Xem chi tiết
☠✔AFK✪Kaito Kid✔☠
Xem chi tiết
Phạm Khắc Tuệ
Xem chi tiết
erza
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết