Chứng minh bất đẳng thức: \(\left(1+a\right)^x>\dfrac{x\left(x-1\right)}{2}a^2\) với x là biến và a là hằng số dương bất kì
Xét các mệnh đề sau
(1) log2(x - 1)2 + 2log2(x+1) = 6
<=> 2log2(x-1) + 2log2(x+1) = 6
(2) log2(x2+1) ≥ 1 + log2|x|; ∀ x ∈ R
(3) xlny = ylnx; ∀ x > y > 2
( 4 ) log 2 2 2 x - 4 log 2 x - 4 = 0 ⇔ log 2 2 x - 4 log 2 x - 3 = 0
Số mệnh đề đúng là
A. 0
B. 1
C. 2
D. 3
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
RÚT GỌN BIỂU THỨC:
17) \(A = \left(\dfrac{\sqrt{x} - 1}{3\sqrt{x} - 1} - \dfrac{1}{3\sqrt{x} + 1} + \dfrac{8\sqrt{x}}{9x - 1}\right) : \left(1 - \dfrac{3\sqrt{x} - 2}{3\sqrt{x} + 1}\right)\)
Chứng minh các bất đẳng thức sau:
1 + 1 2 x - x 2 8 < 1 + x < 1 + 1 2 x
với 0 < x < + ∞
Trong không gian hệ trục tọa độ Oxyz, cho a → = ( 2 ; 3 ; 1 ) , b → = ( - 1 ; 5 ; 2 ) , c → = ( 4 ; - 1 ; 3 ) và x → = ( - 3 ; 22 ; 5 ) Đẳng thức nào đúng trong các đẳng thức sau?
A. x → = 2 a → - 3 b → - c →
B. x → = 2 a → + 3 b → + c →
C. x → = 2 a → + 3 b → - c →
D. x → = 2 a → - 3 b → + c →
Xét tính đơn điệu của các hàm số sau:
\(y = {x^2 -1 \over x^2 +1} trong ( 0; + vô cùng)\)
\(y = {x^4-4x^3 \over x-1} \)
\(y = { \sqrt{x} -x}\)
\(y={x^2\over\sqrt {x^2-1}}\)
xét sự biến thiên của hàm số a)f'(x)=(x+1)⁷(x²-4x)(x-2)³x⁵ b)f'(x)=(x²-7x+6)(-2x+7)/(x-1)³(x-4)² c)f'(x)=(x²-6x+5)(x-1)⁷/x²+3x+2
xét sự biến thiên của hàm số a)f'(x)=(x+1)⁷(x²-4x)(x-2)³x⁵ b)f'(x)=(x²-7x+6)(-2x+7)/(x-1)³(x-4)² c)f'(x)=(x²-6x+5)(x-1)⁷/x²+3x+2