x3 + ax2 - a = (x3 + 4x2 + ax) + ax2 - 4x2 - ax - a = x(x2 + 4x + a) + (a - 4)x2 - ax - a
= x(x2 + 4x + a) + (a - 4)x2 + 4(a - 4)x + a.(a - 4) - 4(a - 4)x - ax - a.(a - 4) - a
= x(x2 + 4x + a) + (a - 4). (x2 + 4x + a) - (5a -16)x - a2 + 3a
= (x + a - 4)(x2 + 4x + a) - (5a -16)x - a2 + 3a
=> x3 + ax2 - a chia cho x2 + 4x + a dư - (5a -16)x - a2 + 3a
Để phép chia là phép chia hết thì - (5a -16)x - a2 + 3a = 0 với mọi x <=> 5a - 16 = 0 và -a2 + 3a = 0
<=> a = 16/5 và a = 0 hoặc a = 3 : Điều này không xảy ra
Vậy không tồn tại a để....