Đa thức \(f\left(t\right)\)có dạng \(2t^2+at+b\)
Có:
\(f\left(-1\right)=2\left(-1\right)^2+a\left(-1\right)+b=0\)
\(2-a+b=0\)
\(b-a=2\)
\(f\left(2\right)=2.2^2+2a+b=0\)
\(8+2a+b=0\)
\(2a+b=-8\)
\(\Rightarrow\left(2a+b\right)-\left(b-a\right)=-8-2\)
\(3a=-10\)
\(a=-10:3\)
\(a=-\frac{10}{3}\)
\(b-\left(-\frac{10}{3}\right)=2\)
\(b=2-\frac{10}{3}\)
\(b=-\frac{4}{3}\)
Vậy \(f\left(t\right)=2t^2+\frac{-10}{3}t+\frac{-4}{3}\)