Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là tam thức bậc 2
\(\Rightarrow\) Hạng tử bậc 2 : \(x^4:x^2=x^2\)
Đặt đa thức thương là \(x^2+cx+d\)
\(\Rightarrow\) Để \(x^4-3x^2+ax+b⋮x^2-3x+2\) \(\text{thì }\Rightarrow x^4-3x^2+ax+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-3x^3-3cx^2-3dx+2x^2+2cx+2d\\ =x^4+\left(c-3\right)x^3+\left(d-3c+2\right)x^2+\left(2c-3d\right)x+2d\\ \Rightarrow\left\{{}\begin{matrix}c-3=0\\d-3c+2=-3\\2c-3d=a\\2d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=3\\d-3c=-5\\2c-3d=a\\2d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=4\\6-3d=a\\2d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-6\\b=8\end{matrix}\right.\)
Vậy để \(x^4-3x^2+ax+b⋮x^2-3x+2\)
thì \(a=-6;b=8\)