Ta có : \(\frac{x}{3}=\frac{y}{5}\)
\(\Rightarrow x=3k\) ; \(y=5k\)
Thay \(x=3k\) và \(y=5k\) vào biểu thức \(x+2y=10\) ta có :
\(3k+2\times5k=10\)
\(3k+10k=10\)
\(\left(3+10\right)k=10\)
\(13k=10\)
\(\Rightarrow k=\frac{10}{13}\)
Vậy :
\(\hept{\begin{cases}x=3k=3\times\frac{10}{13}=\frac{30}{13}\\y=5k=5\times\frac{10}{13}=\frac{50}{13}\end{cases}}\)
Mk ko biết đúng ko, đúng thì k cho mk nha
Đặt x/3=y/5=k
=> x=3k và y=5k
x+2y=10
3k+2.5k=10
3k+10k=10
13k=10
k=10/13
x=3k=3.10/13=30/13
y=5k=5.10/13=50/13
C2
TCCDTSBN
\(\frac{x}{3}=\frac{y}{5}=\frac{x+2y}{3+2.5}=\frac{10}{13}\)
=> x \(\frac{10}{13}.3=\frac{30}{13}\)
=> y =\(\frac{10}{13}.5=\frac{50}{13}\)