Tìm x, y,z : x/2y+2z+1=y/2x+2z+1=z/2x+2y-2=2. (x+y+z)
x/(2y+2z+1)=y/(2x+2z+1)=z/(2x+2y-2)=2.(x+y+z)
Tìm z,x,y
x/(2y+2x+1)=y/(2x+2z+1)=z/(2x+2y-2)=2.(x+z+y)
Tìm x,y,z biết:
\(\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=2\left(x+y+z\right)\)
Tìm x y z
\(\frac{x}{2y+2z+1}\)=\(\frac{y}{2x+2z+1}\)=\(\frac{z}{2x+2y-2}\)=2(x+y+z)
Cho
2x+2y-z/z =2x-y+2z/y=-x+2y+2z/x
Tính gtgt
(X+y)*(y+z)*(x+z)/8xyz
cho x,y,z là các số hữu tỉ khác 0 , sao cho 2x+2y-z/z=2x-y+2z/y=-x+2y+2z/x , tính M=(x+y).(y+z).(z+x)/8xyz
Bài 1:Tìm x, y, z biết :
12x-15y / 7 = 20z-12x / 9 = 15y-20z / 11 và x+y+z=48
Bài 2:Cho 2y+2z-x / a = 2z+2x-y / b = 2x+2y-z / c
Chứng minh rằng: x / 2b+2c-a = y / 2c+2b-a + z / 2a+2b -c
Cho x,y,z thỏa mãn x+y+z=3. Chứng minh rằng:\(a^2b+b^c+c^2a\le\frac{9x^2y^2z^2}{1+2x^2y^2z^2}\)