giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
\(B=x-4\sqrt{x}+\frac{x+16}{\sqrt{x}+3}+10=x-4\sqrt{x}+4+\frac{4\left(\sqrt{x}+3\right)+x-4\sqrt{x}+4}{\sqrt{x}+3}+6\)
\(=\left(\sqrt{x}-2\right)^2+\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4+6\ge10\)Dấu = xảy ra tại x=4
1 + 1 = 2
2 + 2 = 4
4 x 4 x 4 x 4 =
5 x 60 =
Ai nhanh mk tk cho
c) A= x(x+2)(x+4)(x+6)+8
A= x(x+6)(x+2)(x+4)+8
A= (x2+6x)(x2+6x+8)+8
Gọi x2+6x = a
A= a(a+8)+8
A= a2+8a+8= (a-4)2-8
A= (a-4)2-8 = (x2+6x+4)2-8\(\ge\)-8
Dấu bằng khi x2+6x+4= 0\(\Leftrightarrow\)x= -3-\(\sqrt{5}\)
1 + 1 x 2 - 4 x 6 + 4 - 2 + 2 x 7=?
a/ (x+3) . (X+2)=0
b/(x-7) .(x+2005) =0
c/ 5. (x-7)+ 3. (x + 2) = 7 . (x - 5) + 2 . |-4| . ( -3) . 5
d/|x - 1| + 5. (x- 2 ) = 5. x - 4.|-2|
7/2.x-3/4=5/6– -2/3
5/6-(20%.x-3/4)=x+1/2
1 x 1 =
2 x 2 =
3 x 3 =
4 x 4 =
5 x 5 =
b) B= (x-1)(x-3)(x2-4x+5)
B= (x2-4x+3)(x2-4x+5)
Gọi x2-4x+4= a. Ta có
B= (a-1)(a+1)
B= a2+a-a-1= a2-1
B= (x2-4x+4)2-1
B= (x-2)4-1\(\ge\)-1
Dấu bằng khi (x-2)4= 0
=> x-2=0 \(\Leftrightarrow\)x=2
a,\(8x^3-12x^2+6x-5=0\Leftrightarrow8\left(x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\right)-4=0\)
\(\Leftrightarrow8\left(x-\frac{1}{2}\right)^3=4\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt[3]{2}}+\frac{1}{2}\)