Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
Tim tat ca cac so nguyen x,y thoa man x^2 + 8y^2 - 6y - 2x + 6y + 6 = 0. ai biet giai giup minh voi,toan nang cao lop 9 do,cam on moi nguoi nhieu
x>0 y>0 x+y=4
tìm min E cho x>0 y>0 và x+y=4 tìm min E= (x+1/x)^2 +(y+1/y)^2 +2018
rút gọn hộ mk vs \(E=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
b. CMR E lớn hơn hoặc= 0
c. So sánh E vs \(\sqrt{E}\)
giai giup mk vs
cho hai số x,y thỏa mãn đồng thời \(x^3-x^2+x-5=0\) và \(y^3-2y^2+2y+4=0\)
tính tổng \(x+y\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
giai hệ pt
\(\hept{\begin{cases}x^2+xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
\(\hept{\begin{cases}x+6\sqrt{xy}-\sqrt{y}=0\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}=3\end{cases}}\)
rút gọn:
\(a,\frac{\sqrt{4mn^2}}{\sqrt{20m}}\left(m>0,n>0\right)\)
\(b,\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}\left(a< 0,b\ne0\right)\)
\(c,\frac{y-\sqrt{xy}}{x-\sqrt{xy}}\)với\(xy>0,y\ne1\)
\(d,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)với \(x>0,y>0,y\ne1\)
\(e,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)với \(x>0\)