= x- 2.căn (x) + căn(x) - 2
= [căn(x)-2] . [căn(x)+1]
x-\(\sqrt{x}\)-2= x-\(\sqrt{x}\)+1/4-9/4=(\(\sqrt{x}\)-1/2)2-(3/2)2
=(\(\sqrt{x}\)-1/2-3/2)(\(\sqrt{x}\)-1/2+3/2)=(\(\sqrt{x}\)-2)(\(\sqrt{x}\)+1)
= x- 2.căn (x) + căn(x) - 2
= [căn(x)-2] . [căn(x)+1]
x-\(\sqrt{x}\)-2= x-\(\sqrt{x}\)+1/4-9/4=(\(\sqrt{x}\)-1/2)2-(3/2)2
=(\(\sqrt{x}\)-1/2-3/2)(\(\sqrt{x}\)-1/2+3/2)=(\(\sqrt{x}\)-2)(\(\sqrt{x}\)+1)
√x+2 =x (√x+2 )^2=|x|^2 |x+2|=|x|^2 [X+2=x^2 [X+2=-x^2 Giải tiếp sau ạ
giải pt
a 2(x+3)(x-4)=(2x-1)(x+2)-27
b (3x+2)(x-1)-3(x+1)(x-2)=4
c (x+2)(x^2 -2x+4)-x(x-3)(x+3)=26
d (3x+2)(3x-2)-(3x-4)^2=28
e 5(x+3)^2-5(x-4)(x+8)=3x
f 2x(x+2)^2-8x^2=2(x-2)(x^2+2x+4)
g (2x-1)(4x^2+2x+1)-4x(2x^2-3)=23
h x(x-2)(x+2)-(x-3)(x^2+3x+9)+1=0
i x(x^2+x+1)-(x-1)(x+1)x=x^2+2
Giải phương trình:
a) (căn(2+căn 3))^x +(căn(2-căn 3))^x = 2^x
b) 2^x + 2^(-x) +2 = 4x - x^2
c) 2(cos((x^2+x)/6))^2= 2^x + 2^(-x)
d) (8^x + 2^x)/(4^x - 2)=5
Giải pt:
1) Căn(x^2 - x + 2) + 1 = căn(10 - x^2 + x)
2) 4căn(x) - 2 căn(2 - x) + x - 4 căn( 2x - x^2) + 1 =0
3) x^2 + 3x - 1= (x+2) căn(x^2 + x - 1)
4) 3x^2 + 4x + 2 = 3(x+2) căn(x^2 - 1)
Giải các phương trình sau:
1) 2 1 5 x 2) 2 1 5 x x
3) 3 1 2 x x 4) 3 2 2 x x
5) 2 1 5 x x 6) 3 2 x x
7) 2 3 2 1 x x 8) 2 1 4 1 0 x x 2
9) 2 5 4 3 1 1 2
3 2 3 1
x x
x x x x
10) 1 7 3 2
3 3 9
x x x
x x x
11) 5 296 2 1 3 1
16 4 4
x x
x x x
12)
2 4
1
2 1 2 1 2 1 2 1
x x
x x x x
13) 2 1 2 2
2 2
x
x x x x
14) 22 4
2 6 2 2 2 3
\(A=\frac{x-2\sqrt{x}}{x^3+1}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2\sqrt{x}_{ }^2}\)
\(B=\frac{\frac{1}{\sqrt{x+2}}-\sqrt{x-2}}{\frac{1}{\sqrt{x-2}}-\frac{1}{\sqrt{x+2}}}:\frac{\sqrt{x-2}\sqrt{x^2-4}}{\left(x+2\right)\sqrt{x-2}-\left(x-2\right)\sqrt{x+2}}+x^2+1\\ x>2\)
giải hộ em ạ, em cảm ơn :>
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
\(\frac{\left(x^2+x+1\right)\sqrt{x^2-x+1}+\left(x^2-x+1\right)\sqrt{x^2+x+1}}{\sqrt{x^2+x^2+1}}\div\frac{1}{\sqrt{x^2+1+x}-\sqrt{x^2-x+1}}\)
\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-3}{x-\sqrt{x}-2}\right):\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{2}{\sqrt{x}-2}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x+\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-\sqrt{x}+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+3+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
Giải phương trình:
`c) x^2 - 6. sqrt(x^2 +5) + x = 2.sqrt(x-1) - 14`
`d) x^2 - sqrt((x^2-8).(x-2)) +x = sqrt(x^2 - 8) + sqrt(x-2) +9`