Vì \(\left|x-5\right|\ge0\Rightarrow x+3\ge0\Rightarrow x\ge-3\)
+)Trường hợp 1:\(x-5=-\left(x+3\right)\)
=>x-5=-x-3
=>2x=2
=>x=1 (thỏa mãn điều kiện \(x\ge-3\))
+)Trường hợp 2: x-5=x+3
=>x-x=3+5
=>0=8 vô lý!
Vậy x=1
Th1 : \(\left|x-5\right|\ge0\)
Pt trở thành :
\(x-5=x+3\)
\(\Rightarrow x-x=8\)
\(\Rightarrow0x=8\)( vô lý )
=> TH1 ko thỏa mãn
TH2 : \(\left|x-5\right|< 0\)
Pt trở thành :
\(-x+5=x+3\)
\(\Rightarrow-2x=-2\)
\(\Rightarrow x=-1\)
Vậy PT trên nhận 1 giá trị duy nhất là : - 1
|x-5|=x+3
=>x-5=x+3 hoặc x-5=-(x+3)
=>x+x=3+5 hoặc x-5=-x-3
=>2x=8 hoặc x+x=-3+5
=>x=4 hoặc 2x=2=>x=1
Vậy x=4 hoặc x=1