Giải:
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-6}{12}=\frac{30-6}{12}=2\)
=> \(\hept{\begin{cases}\frac{x-1}{3}=2\\\frac{y-2}{4}=2\\\frac{z-3}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x-1=6\\y-2=8\\z-3=15\end{cases}}\) => \(\hept{\begin{cases}x=7\\y=10\\z=18\end{cases}}\)
Vậy ...
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-6}{12}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{3}=2\\\frac{y-2}{4}=2\\\frac{z-3}{5}=2\end{cases}\Rightarrow}\hept{\begin{cases}x-1=6\\y-2=8\\z-3=10\end{cases}\Rightarrow}\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)