Ta thấy : \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\forall x\)
Mà \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\) nên \(4x\ge0\)
\(\Rightarrow x\ge0\)
Khi đó : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+3\right|=x+3\end{cases}}\)
Do đó ta có :\(x+1+x+2+x+3=4x\)
\(\Leftrightarrow3x+6=4x\)
\(\Leftrightarrow x=6\) ( thoả mãn )
Vậy \(x=6\)