( x + 1 ) + ( x + 2 ) + ... + ( x + 10 ) = 165
( x + x + ... + x ) + ( 1 + 2 + ... + 10 ) = 165
10x = 165 - 55
10x = 110
x = 110 : 10
x 11
<=> x + 1 + x + 2 +......+ x + 10 = 165
<=> 10x + (1+2+....+10) = 165
<=> 10x + 65 = 165
<=> 10x = 165 - 65 = 100
<=> x = 10
( x + 1 ) + ( x + 2 ) + ..... + ( x + 10 ) = 165
x + 1 + x + 2 + ..... + x + 10 = 165
( x + x + ....+ x ) + ( 1 + 2 + ... + 10 ) = 165
10x + 55 = 165
10x = 165 - 55 = 110
x = 110 : 10 = 11
Vậy x = 11
( x + x + .......... + x ) + ( 1 + 2 + ......... + 10 ) = 165
X x 10 + 55 = 165
X x 10 = 165 - 55
X x 10 = 110
X = 110 : 10
X = 11
Nhầm rùi bạn ơi từ chỗ 10x + (1+2+....+10) = 165
<=> 10x + 55 = 165
<=>10x = 165 - 55 =110
<=> x= 11
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=165\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+10\right)=165\)
\(\Leftrightarrow10x+55=165\)
\(\Leftrightarrow10x=165-55\)
\(\Leftrightarrow10x=110\)
\(\Leftrightarrow x=110\div10\)
\(\Leftrightarrow x=11\)
Vậy x = 11
(x+1)+(x+2)+......+(x+10) = 165
=>10x + (1+2+....+10) = 165
=>10x+55 = 165
=>10x = 110
=> x = 110/10 =11
ta có:
(x+1)+(x+2)+..+(x+10) = 165
= (x+x+..+x)+(1+2+..+10) = 165
= 10x + 55 = 165
=> 10x = 165 -55 = 110
x = 110 : 10 = 11
[x+1]+[x+2]+.....+[x+10]=165=x+1+x+2+....+x+10=165=[x.10]+[1+2+3+4+5+6+7+8+9+10]=[x.10]+55=165=x.10=110 X=11
( x + 1 ) + ( x + 2 ) + ... + (x + 10 ) = 165
( x + x + ... + x ) + ( 1 + 2 + ... + 10 ) = 165
10x + 55 = 165
10x = 165 - 55
10x = 110
x = 110: 10
x = 11
Vậy...