Cho các số thực dương \(x,y,z\) thỏa mãn: \(xy+yz+xz=1\). Hãy tính giá trị biểu thức: \(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x,y là hai số thực thỏa mãn xy+\(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =1
Tính giá trị của biểu thức M=(x+\(\sqrt{1+y^2}\))(y+\(\sqrt{1+x^2}\))
Cho x và y là các số dương thoả mãn \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
Tính giá trị của biểu thức: \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Cho các số dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
Tính giá trị của biểu thức P=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho các số dương x,y,z thỏa mãn:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\).Tính giá trị biểu thức: \(p=\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
Cho các số thực x, y thỏa mãn: \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tính giá trị của biểu thức: \(A=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
Cho x, y, z là các số thực dương thõa mãn xy + yz + zx = 1
a) Chứng minh rằng: \(1+x^2=\left(x+y\right)\left(x+z\right)\)
b) Tính giá trị biểu thức P = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
\(\frac{X}{\left(\sqrt{X}+\sqrt{Y}\right)\left(1-\sqrt{Y}\right)}-\frac{Y}{\left(\sqrt{X}+\sqrt{Y}\right)\left(\sqrt{X}+1\right)}-\frac{XY}{\left(\sqrt{X}+1\right)\left(1-\sqrt{Y}\right)}\)
Rút gon biểu thức trên
Tìm giá trị nguyên x; y thỏa mãn P=2
Cho các số thực dương thỏa mãn xy + yz + zx = 1
Rút gọn biểu thức:\(\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\) + \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) + \(\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}\)
Nhanh lên nào mk cần lắm rùi!!!