Với những giá trị nào củ x thỏa mãn điều kiện \(x\ge-\frac{1}{2}\), hãy tìm giá trị lớn nhất của biểu thức:
f(x)= \(\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
giúp mình với
cho \(x\ge-\frac{3}{2}\). Tìm giá trị lớn nhất của biểu thức: \(M=\sqrt{\left(2x+3\right)\left(x+4\right)}+2\sqrt{x+5}-2x\)
Cho biểu thức A=\(\sqrt{x^2+2x+\frac{3}{4}+\sqrt{x^2+3x+\frac{9}{4}}}\) với x\(\ge\frac{-3}{2}\)
1. Tìm min A
2. Tìm các giá trị của x, biết 2A=\(2x^3+5x^2+5x+3\)
Cho biểu thức
\(A=\left(\frac{2}{\sqrt{x-2}}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)\(x\ne4;x>0\)
1. Rút gọn biểu thức A
2. Tìm tất cả các giá trị của x sao cho \(A=\frac{3\sqrt{x}+2}{\sqrt{x}+2}\)
3. Tìm giá trị cũa sao cho \(A\ge\frac{15}{7}\)
4. Tìm x sao cho A nhận giá trị là một số nguyên
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{-1}{2x-3\sqrt{x}+2}với\)x \(\ge\)0
Cho x \(\ge\)1 tìm giá trị nhỏ nhất của biểu thức
A = \(\sqrt{x-1}\)+ \(\sqrt{2x^2-5x+7}\)
Cho x \(\ge\)1 tìm giá trị nhỏ nhất của biểu thức
A = \(\sqrt{x-1}\)+ \(\sqrt{2x^2-5x+7}\)
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)