với x > 1, biểu thức \(A=5x+\frac{180}{x-1}\)đạt giá trị nhỏ nhất khi x = ....?
với x > 1 biểu thức \(A=5x+\frac{180}{x-1}\)
đạt giá trị nhỏ nhất khi x bằng bao nhiêu?
Với x > 1 , biểu thức \(B=5x+\frac{180}{x-1}\) đạt giá trị nhỏ nhất khi x = ?
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Cho biểu thức : B=\(\frac{2}{1-5x}+\frac{1}{x}\) với \(0< x< \frac{1}{5}\).Tìm giá trị nhỏ nhất của B
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2}{1-x}+\frac{1}{x}\) với 0<x<1
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{5x+6\sqrt{1-x^2}+7}{\sqrt{1-x^2}}\)với \(\left|x\right|< 1\)