\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp
Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
Ngoài ra trong đó còn có 1 số chia hết cho 2 vì có 2 tự nhiên liên tiếp
Mà (2,3)=1 Do đó \(n^3-n\) chia hết cho 6
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
CMR với mọi STN n thuộc N, ta có a) 7^4n -1 chia hết cho 5
CMR: với mọi STN n<a thì tích (n+3)(n+6) chia hết cho 2
1,Chứng minh biểu thức A=2017+(n+6).(n+8).(n+13) ko chia hết cho 6 với mọi STN n
2, CM:4 số chẵn liên tiếp ko chia hết cho 128
3, CM với mọi STN a thì trong các số a+1,a+15,a+7,a+8,a+ 14 luôn có 1 số chia hết cho 5
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
1.Cho A=5^2014-5^2013+...-5^3+5^2-5+1
Tìm STN n biết 6A-1=5^n
2.CMR với mọi STN n thì biểu thức
A=(n+1)(n+6)+20 ko chia hết cho 25
Chứng tỏ rằng mọi stn n ta luôn có (n+3).(n+6) chia hết cho 2
Chứng tỏ rằng với một n là STN, ta luôn có :
a) n . ( n + 1 ) . ( n + 5 ) chia hết cho 3
b) n . ( 2n + 1 ) . ( 7n + 1 ) chia hết cho 6
Làm nhanh giúp mình nha