(P⇒Q): "Nếu x 2 = 1 thì x = 1". Mệnh đề đảo là: “Nếu x = 1 thì x 2 = 1 thì x =1”.
(P⇒Q): "Nếu x 2 = 1 thì x = 1". Mệnh đề đảo là: “Nếu x = 1 thì x 2 = 1 thì x =1”.
Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
Cho a là số tự nhiên, xét các mệnh đề P : “a có tận cùng là 0”, Q: “a chia hết cho 5”.
Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
Phát biểu mệnh đề P => Q và phát biểu mệnh đề đảo, xét tính đúng sai của các mệnh đề đó với: P: ″2 > 9″ và Q: ″4 < 3″. Chọn đáp án đúng:
A. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q đúng.
B. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
C. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này sai vì mệnh đề Q sai.
D. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
Với mỗi số thực x, xét các mệnh đề P: “ x 2 = 1”, Q: “x = 1” Chỉ ra một giá trị của x mà mệnh đề P ⇒ Q sai
Cho đa thức f(x) = a x 2 + bx + c. Xét mệnh đề "Nếu a + b + c = 0 thì f(x) có một nghiệm bằng 1". Hãy phát biểu mệnh đề đảo của mệnh đề đảo của mệnh đề trên. Nêu một điều kiện cần và đủ f(x) có một nghiệm bằng 1
Với mỗi số thực x, xét các mệnh đề P: “ x 2 = 1”, Q: “x = 1”
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó. ∃ x ∈ R : x < 1/x.