Bất đẳng thức cần chứng minh tương đương với \(n>\left(1+\frac{1}{n}\right)^n.\)
Ta chứng minh bằng quy nạp theo n. Với \(n=3\): ta có vế trái bằng \(3^4=81\), vế phải \(4^3=64\). Vậy bất đẳng thức đúng với \(n=3\).
Giả sử đúng đến \(n\), tức là ta đã có \(n>\left(1+\frac{1}{n}\right)^n.\) Khi đó
\(\left(1+\frac{1}{n+1}\right)^{n+1}