Thay m = 1 vào hệ phương trình đã cho ta được:
x − y = 2 x + 2 y = 5 ⇔ 2 x − 2 y = 4 x + 2 y = 5 ⇔ 3 x = 9 x + 2 y = 5 ⇔ x = 3 y = 1
Vậy hệ phương trình đã cho có nghiệm duy nhất là (3; 1) khi m = 1
Đáp án: A
Thay m = 1 vào hệ phương trình đã cho ta được:
x − y = 2 x + 2 y = 5 ⇔ 2 x − 2 y = 4 x + 2 y = 5 ⇔ 3 x = 9 x + 2 y = 5 ⇔ x = 3 y = 1
Vậy hệ phương trình đã cho có nghiệm duy nhất là (3; 1) khi m = 1
Đáp án: A
Với m = 1 thì hệ phương trình x − y = m + 1 x + 2 y = 2 m + 3 có cặp nghiệm (x; y) là:
A. (3; 1)
B. (1; 3)
C. (−1; −3)
D. (−3; −1)
Với m = 1 thì hệ phương trình: x - y = m + 1 x + 2 y = 2 m + 3 có cặp nghiệm (x; y) là:
A. (3; 1)
B. (1; 3)
C. (-1; -3)
D. (-3; -1)
Cho hệ phương trình: 2mx+y=5
(m+1)x+y=2
a) giải hệ phương trình thì m=1
b) tìm m để có nghiệm (1/3 ; 5/3)
c) tìm m để hệ pt có nghiệm duy nhất sao cho x>0 ; y>0
bài 1: giải các phương trình sau :
a) x^3-5x=0 b) căn bậc 2 của x-1=3
bài 2 :
cho hệ phương trình : {2x+my;3x-y=0 (I)
a) giải hệ phương trình khi m=0
b) tìm giá trị của m để hệ (I) có nghiệm (x;y) thỏa mãn hệ thức :
x-y+m+1/m-2=-4
bài 3:giải các phương trình sau
a)5x-2/3=5x-3/2 b) 10x+3/12=1+6x+8/9 c) 2(x+3/5)=5-(13/5+x) d) 7/8x-5(x-9)=20x+1,5/6
Bài 1 : Giải hệ phương trình :
(căn 3 +1)x^3 -(căn 3)x^2 - x = 0
Bài 2 : Cho hệ phương trình :
x + my = m + 1 và mx + y = 3m - 1
a, Giải hệ với m = 2
b, Tìm m để pt có nghiệm duy nhất (x;y) sao cho x,y có giá trị nhỏ nhất
Các bạn giúp mình vs ạ TvT
cho hệ phương trình
x + y = m
2x - my = 0
1, giải hệ phương trình (1) khi m=-1
2, xác định giá trí của m để
a, x=1 và y=1 là nghiệm của hệ (1)
b, hệ (1) vô nghiệm
3, tìm nghiệm của hệ phương trinh (1) theo m
4, tìm m để hệ (1) có nghiệm (x,y) thỏa: x + y =1
1) {x^2+2x^2=3 {2x^2+3x^2=5 2) giải theo m {x+y=2m+1 {x-y=1 3)giải theo m {x +2y=3m+2 {2x+y=3m+2 4) cho hệ. {x+3y=4m+4 {2x+y=3m+3 Tìm m để hệ có nghiệm (x,y) thỏa mãn x+y=4 HỆ PHƯƠNG TRÌNH HẾT Ạ Giúp mik với nhé
Cho hệ phương trình: \(\hept{\begin{cases}2x-y=2m-1\\-x+y=2\end{cases}}\)
a) Giải hệ phương trình với m=1
b) Tìm m để hệ phương trình có nghiệm (x ; y) thỏa mãn : x+ 2y = 3.
1) Giải hệ phương trình:
\(\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\)
\(\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\)
2) Cho phương trình: \(^{x^2}\)– 2(m + 1)x + 4m = 0
a,Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)
b. Tìm m để hai nghiệm x1, x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1.x_2=3\)
Giaỉ chi tiết giúp mình 1 chút ạ. Mình cảm ơn