Bài làm:
Ta có: \(A=\frac{37-3x}{10-x}=\frac{\left(30-3x\right)+7}{10-x}=\frac{3\left(10-x\right)+7}{10-x}=3+\frac{7}{10-x}\)
Để A có giá trị lớn nhất => \(\frac{7}{10-x}\)phải đạt giá trị lớn nhất
=> \(10-x\)đạt nhỏ nhất có thể
Mà \(10-x< 0\)\(\Rightarrow\frac{7}{10-x}< 0\)
=> \(10-x>0\), mà x nguyên => \(10-x\)nguyên dương
=> Để \(\frac{7}{10-x}\)đạt giá trị lớn nhất => \(10-x=1\Leftrightarrow x=9\)
Khi đó \(A=3+7=10\)
Vậy \(Max\left(A\right)=10\)khi \(x=9\)
Học tốt!!!!