Để A nguyên => 3 chia hết n-1
=> n-1 thuộc Ư(3)={-1;1;-3;3}
=>n={0;2;-3;4}
a) Vì \(\frac{3}{n-1}\) là 1 số nguyên => 3 chia hết cho n-1 \(\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | 3 | -1 | -3 |
n | 2 | 4 | 0 | -2 |
Vậy n={2;4;0;-2}
b) Vì \(\frac{x-2}{x+3}\) là số nguyên => (x+3)-5 chia hết cho (x+3)
Mà (x+3) chia hết cho (x+3) \(\Rightarrow5\) chia hết cho (x+3)\(\Rightarrow\left(x+3\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
x+3 | 1 | 5 | -5 | -1 |
x | -2 | 2 | -8 | -4 |
Vậy x={-2;2;-8;-4}