a, ĐK \(\hept{\begin{cases}a\ge1\\a\le-1\end{cases}}\)
b, ĐK a\(\le\)2
a) Ta có: \(\sqrt{a^2-1}=\sqrt{\left(a+1\right)\left(a-1\right)}\)
Để \(\sqrt{a^2-1}\) có nghĩa thì \(\left(a+1\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a\le-1\\a\ge1\end{cases}}\)
b) Ta có: \(\sqrt{4-a^2}=\sqrt{2^2-a^2}=\sqrt{\left(a+2\right)\left(2-a\right)}\)
Để \(\sqrt{4-a^2}\) có nghĩa thì \(\left(a+2\right)\left(2-a\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a+2\le0\\2-a\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-2\\a\le2\end{cases}}\Leftrightarrow a\le2\)