với a,b là các số nguyên. chứng minh nếu \(4a^2+3ab-11b^2\)chia hết cho 5 thì \(a^4-b^4\)chia hết cho 5
CMR: nếu 4a^2+3ab-11b^2 chia hết cho 5 thì a^4-b^4 chia hết cho 5
Voi a,b la cac so nguyen . Chung minh rang neu 4a^2+3ab-11b^2 chia het cho 5 thi a^4-b^4 chia het cho 5
với a,b là các số nguyên, chứng minh rằng nếu 6a^2+5ab-16b^2 chia hết cho 7 thì a^4-b^4 chia hết cho 7
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Giúp với!!
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
BÀI 1:
a) Chứng minh rằng : nếu 2a>b>0 thì 4a>b
b) Các số a ,b thỏa mãn điều kện 4a2+b2= 5ab
c) chứng minh rằng nếu 4a>b thì 2a>b>0
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.