Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Linh

Với \(a,b,c\in\left[1;2\right],\)hãy chứng minh bất đẳng thức sau:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

Tuấn
22 tháng 8 2016 lúc 21:12

Không mất tính tổng quát giả sử \(1\le a\le b\le c\le2\)\(\Rightarrow\hept{\begin{cases}\frac{a}{b}\le1\\\frac{b}{c}\le1\end{cases}\Rightarrow\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\ge0}\)(1)
Tương tự ta có \(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{b}\right)\le2\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{a}{c}\right)+3\le5+2\left(\frac{a}{c}+\frac{c}{a}\right)\)(2)
Mà :\(\left(2-\frac{a}{c}\right)\left(\frac{1}{2}-\frac{a}{c}\right)\le0\Rightarrow\frac{1}{2}-\frac{a}{c}\le0\Leftrightarrow\frac{1}{2}\le\frac{a}{c}\le1\Rightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
\(\left(3\right)\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le5+\frac{2.5}{2}=10\Rightarrow dpcm\)
Dấu= xảy ra khi \(\left(a,b,c\right)\in\left\{\left(1,1,2\right);\left(2,2,1\right)\right\}\)và các cặp hoán vị của nó 
\(\)
 

Nguyễn Phương Linh
22 tháng 8 2016 lúc 20:25

1/  Cho \(a,b,c\ge1\)Chứng minh rằng:

\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{1+abc}\)

2/  Cho \(a,b,c,d\in\left[0;1\right].\)Chứng minh rằng:

\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}.\)

3/  Giả sử\(a,b>0\)và 


Các câu hỏi tương tự
Kuuhaku
Xem chi tiết
Thanh Tâm
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
khoa le nho
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
Ngô Mạnh Kiên
Xem chi tiết
Nguyễn Minh Tuyền
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Hoàng Lê Minh
Xem chi tiết