Ta có: \(\left(b-c\right)^2\ge0\Leftrightarrow b^2-2bc+c^2\ge0\)
\(\Leftrightarrow\left(b+c\right)^2\ge4bc\)
Áp dụng BĐT Cô - si cho 2 số không âm, ta được:
\(\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
hay \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)nên
\(b+c\ge4a.4bc=16abc\left(đpcm\right)\)