Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0
Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2
Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1
Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0
Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2
Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1
với a,b,c là 3 số dương thỏa mãn a.b=d.c=1 .
Chứng minh: (a+b)(c+d) +4 \(\ge\) 2(a+b+c+d)
cho a, b, c, d là các sô dương thoả mãn \(a^2+b^2=1\) và \(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\)chứng minh rằng \(\frac{a^2}{c}+\frac{d}{b^2}\ge2\)
cho các số dương a,b,c,d thỏa mãn điều kiện abcd=1. chứng minh rằng
\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge12\)
cho các số nguyên dương a,b,c,d,e,f thoả mãn abc=def. chứng minh rằng a(b^2+c^2) + d(e^2+f^2) là hợp số
Cho a,b,c,d là các số thực thỏa mãn a+b+c+d=0. Chứng minh rằng :
\(7\left(a^2+b^2+c^2+d^2\right)^2\ge12\left(a^4+b^4+c^4+d^4\right)\)
cho các số thực a,b,c dương thỏa mãn c+1/b=a+a/b. chứng minh rằng a.b là lập phương của 1 stn
Chứng minh rằng :\(\frac{2}{3}\le\frac{a\left(c-d\right)+3d}{b\left(d-c\right)+3c}\le\frac{3}{2}\) với \(2\le a.b,c.d\le3\)
Cho các số nguyên dương a,b,c,d thỏa mãn \(a< b\le c< d;ad=bc;\sqrt{d}-\sqrt{a}\le1\). Chứng minh rằng a là 1 số chính phương
Cho các số dương a,b,c,d . Chứng minh rằng trong 4 số a^2+1/b+1/c; b^2+1/c+1/d; c^2+1/a+ 1/d;d^2+1/a+ 1/b Có ít nhất một số không nhỏ hơn 3.