Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Cho các số dương a, b,c, d, e. CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\ge\frac{5}{2}\)
Bài 1: Cho a,b,c,d dương CMR: 1<\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{a+c+d}+\frac{d}{a+b+d}\)<2
Bài 2:CMR:Nếu a,b,c là độ dài 3 cạnh của tam giác thì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)<2
cho a,b,c,d la các số thực dương co tong bang 1. Cmr
\(\frac{\text{a}^2}{\text{a}+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+\text{a}}\ge\frac{1}{2}\)
Cho a;b;c là các số thực dương .
CMR :
\(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\ge1\)
B5:
a,c,b,d>0
CMR: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}>=2\)
B6;
a,b,c>0
CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}>=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho các số dương a;b;c;d
CMR: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le2.\)
chứng minh rằng : Với mọi số dương a, b, c, d ta có:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)
CM các BĐT
với các số dương a,b,c,d
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\)
help meeeeeee