Ta có: \(ab+bc+ac=abc+a+b+c\)
\(\Leftrightarrow ab-abc+bc-b+ac-a-c=0\)
\(\Leftrightarrow ab-abc+bc-b+ac-a+1-c=1\)
\(\Leftrightarrow ab\left(1-c\right)+b\left(c-1\right)+a\left(c-1\right)+\left(1-c\right)=1\)
\(\Leftrightarrow ab\left(1-c\right)-b\left(1-c\right)-a\left(1-c\right)+\left(1-c\right)=1\)
\(\Leftrightarrow\left(1-c\right)\left(ab-b-a+1\right)=1\)
\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=1\)
Ta có thể đặt x=1-a ; y=1-b; z=1-c => xyz=1
Nhưng trong đẳng thức cần chứng minh theo x;y;z
=> Thế: a=1-x; b=1-y; c=1-z vào được:
\(\frac{1}{3+ab-\left(2a+b\right)}=\frac{1}{3+\left(1-x\right)\left(1-y\right)-2\left(1-x\right)-\left(1-y\right)}=\frac{1}{1+x+xy}\)
Tương tự: \(\frac{1}{3+bc-\left(2b+c\right)}=\frac{1}{3+\left(1-y\right)\left(1-z\right)-2\left(1-y\right)-\left(1-z\right)}=\frac{1}{1+y+yz}\)
\(\frac{1}{3+ac-\left(2c+a\right)}=\frac{1}{3+\left(1-x\right)\left(1-z\right)-2\left(1-z\right)-\left(1-x\right)}=\frac{1}{1+z+zx}\)
Theo giả thiết xuz=1
=> \(VT=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)
\(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)
\(=\frac{1+x+xy}{1+x+xy}=1=VP\)