Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bé Thư Hoàng

Với a;b;c là những số thực thỏa mãn: ab+bc+ac=abc+a+b+c

với điều kiện \(3+ab\ne2;3+bc\ne2b+c;3+ac\ne2c+a\)

CMR: \(\frac{1}{3+ab-\left(2a+b\right)}+\frac{1}{3+bc-\left(2b+c\right)}+\frac{1}{3+ac-\left(2c+a\right)}=1\)

giúp mình với các bạn ơi

Dương Lam Hàng
12 tháng 2 2019 lúc 21:46

Ta có: \(ab+bc+ac=abc+a+b+c\)

\(\Leftrightarrow ab-abc+bc-b+ac-a-c=0\)

\(\Leftrightarrow ab-abc+bc-b+ac-a+1-c=1\)

\(\Leftrightarrow ab\left(1-c\right)+b\left(c-1\right)+a\left(c-1\right)+\left(1-c\right)=1\)

\(\Leftrightarrow ab\left(1-c\right)-b\left(1-c\right)-a\left(1-c\right)+\left(1-c\right)=1\)

\(\Leftrightarrow\left(1-c\right)\left(ab-b-a+1\right)=1\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)=1\)

Ta có thể đặt x=1-a ; y=1-b; z=1-c => xyz=1

Nhưng trong đẳng thức cần chứng minh theo x;y;z

=> Thế: a=1-x; b=1-y; c=1-z vào được:

\(\frac{1}{3+ab-\left(2a+b\right)}=\frac{1}{3+\left(1-x\right)\left(1-y\right)-2\left(1-x\right)-\left(1-y\right)}=\frac{1}{1+x+xy}\)

Tương tự: \(\frac{1}{3+bc-\left(2b+c\right)}=\frac{1}{3+\left(1-y\right)\left(1-z\right)-2\left(1-y\right)-\left(1-z\right)}=\frac{1}{1+y+yz}\)

                  \(\frac{1}{3+ac-\left(2c+a\right)}=\frac{1}{3+\left(1-x\right)\left(1-z\right)-2\left(1-z\right)-\left(1-x\right)}=\frac{1}{1+z+zx}\)

Theo giả thiết xuz=1

=> \(VT=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)

             \(=\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+x^2yz}\)

            \(=\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)

            \(=\frac{1+x+xy}{1+x+xy}=1=VP\)


Các câu hỏi tương tự
dekhisuki
Xem chi tiết
dekhisuki
Xem chi tiết
Hà Phan
Xem chi tiết
Nguyễn Hoàng Dung
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
sùng trung thành
Xem chi tiết
Siêu Quậy Quỳnh
Xem chi tiết
NGUUYỄN NGỌC MINH
Xem chi tiết
Đức Lộc
Xem chi tiết