Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Cho a,b,c là các số thực dương thỏa mãn: a+b+c=abc. Chứng minh rằng:
\(\frac{b}{a\sqrt{b^2+1}}+\frac{c}{b\sqrt{c^2+1}}+\frac{a}{c\sqrt{a^2+1}}\ge\frac{3}{2}\)
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a,b,c là các số thực dương thỏa mãn: abc=1. Chứng minh rằng:
\(\frac{1}{\sqrt{a^5-a^2+3ab+6}}+\frac{1}{\sqrt{b^5-b^2+3bc+6}}+\frac{1}{\sqrt{c^5-c^2+3ac+6}}\le1\)
cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=abc.\)chứng minh rằng: \(\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}+\frac{1}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Với a,b,c là các số thực dương thỏa a+b+c=abc. C/m: \(\frac{\sqrt{1+a^2}}{a}+\frac{\sqrt{1+b^2}}{b}-\sqrt{1+c^2}< 1\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).
Chứng minh rằng \(\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\frac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Cho \(a,b,c\)là các số thực dương thỏa mãn \(abc=1\). Chứng minh rằng \(\frac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{a+b+c}\le\sqrt{2}\)
1/ Cho mọi số nguyên dương .Chứng minh
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}<1\)
2/ Chứng minh bất dẳng thức sau với các số a, b, c dương.
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}\)
3/ Chứng minh
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\) (với a, b, c dương)
b) \(\frac{a^2}{a+b}-\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\) (với a, b, c dương)