Cho 3 số a;b;c đôi 1 khác nhau.CMR:\(\frac{bc}{\left(b-c\right)^2}+\frac{ca}{\left(c-a\right)^2}+\frac{ab}{\left(a-b\right)^2}\ge\frac{-1}{4}\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn a^2-b=b^2-c=c^2-a Chứng minh rằng (a+b+1)(b+c+1)(c+a+1)= -1
Cho a,b,c là ba số đôi một khác nhau và 1/b-c +1/c-a +1/a-b = 0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
Cho a,b,c là ba số đôi một khác nhau và 1/b-c + 1/c-a + 1/a-b=0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
cho các số thực a,b,c khác nhau từng đôi một và thỏa mãn điều kiện: a^2-b=b^2-c=c^2-a. CMR: (a+b+1)(b+c+1)(c+a+1)=-1
cho ba số a,b,c khac 0 va đôi một khác nhau thỏa mản 1/a + 1/b + 1/c=0
Tính A= a^2/a^2+2bc + b^2/b^2+ 2ac + c^2/c^2+2ab
Giusp mik với please . Mai thi rùi
CMR biểu thúc sau không phụ thuộc vào a,b,c
B=\(\frac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\frac{4b^2-1}{\left(b-c\right)\left(b-a\right)}\frac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)(với a,b,c đôi 1 khác nhau)
Cho a, b, c khác nhau đôi một. Chứng minh rằng: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
giải phương trình (x là ẩn số ; a,b,c là hằng số và đôi một khác nhau)
a) 1/(a+b-x) = 1/a +1/b + 1/x
b) (b-c)(1+a)2 / (x+a2) + (c-a)(1+b)2 / (x+b2) + (a-b)(1+c)2 / (x+c2)
chờ a,b,c đôi một khác nhau và 1/a+1/b+1/c=Q Tính giá trị A=(bc/a^2+2bc) + (ac/b^2+2ac) + (ab/c^2+2ab)