a) Cho A= 1+3+5+7+...+ ( 2n +1) Với n thuộc N
chứng tỏ rằng A là số chính phương.
b) Cho B= 2+4+6+8+...+2n Với n thuộc N
số B có thể là số chính phương không ?
chứng minh rằng nếu ab=c2 với c thuộc N và (a,b)=1 thì a và b cùng là các số chính phương.
Chứng minh rằng: Nếu a.b = c^2 (a, b, c thuộc N) và ƯCLN(a, b) = 1 thì a và b đều là các số chính phương
Chứng minh rằng: Nếu a.b = c^2 (a, b, c thuộc N) và ƯCLN(a, b) = 1 thì a và b đều là các số chính phương
Chứng minh rằng: Nếu ab=c^2 (a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và b đều là các số chính phương
Chứng minh rằng: Nếu ab=c^2 (a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và b đều là các số chính phương
Chứng minh rằng: Nếu ab=c^2 (a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và b đều là các số chính phương
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
Chứng minh rằng nếu ab=c^2 ( a,b,c thuộc N sao) và ƯCLN(a,b) = 1 thì a và đều là các số chính phương. Ai làm nhanh mình tick