VỚI \(0\) ĐỘ \(< 45\) ĐỘ. CHỨNG MINH RẰNG
\(\sin2\alpha=2\sin\alpha\cos\alpha\)\(;\) \(\cos2\alpha=\cos^2\alpha\) \(-\sin^2\alpha;\) \(\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)
Chứng minh các hệ thức sau:
a) \(\frac{1-cos\alpha}{sin\alpha}=\frac{sin\alpha}{1+cos\alpha}\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
1. Tính tan của góc 15 độ mà không sử dụng máy tính.
2. Cho \(\alpha\) là góc nhọn <45 độ. C/m rằng:
a. \(\sin2\alpha=\frac{2\alpha}{\cos\alpha}\)
b. \(\cos2\alpha=\cos^2\alpha-\sin^2\alpha\)
tính
a) \(\tan^2\alpha-\sin^2\alpha-\tan^2\alpha\times\sin^2\alpha\)
b)\(\frac{sin^4\alpha-cos^4\alpha}{sin\alpha+cos\alpha}-sin\alpha+cos\alpha\)
CMR: \(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\tan^6\alpha\)
Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
b) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{17\cos\alpha}\)
2) Rút gọn
a)\(1-\sin^22\)
b)\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)\)
c)\(1+\sin^2\alpha+\cos^2\alpha\)
d)\(\sin\alpha-\sin\alpha.\cos^2\alpha\)
e)\(\sin^2\alpha+\cos^2\alpha+2\sin^2\alpha.\cos^2\alpha\)
f)\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
g)\(\cos^2\alpha+\tan^2\alpha.\cos^2\alpha\)
h)\(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)
CMR: \(\frac{\sin^2\alpha}{\cos\alpha\left(1+\tan\alpha\right)}-\frac{\cos^2\alpha}{\sin\alpha\left(1+\cot\alpha\right)}=\sin\alpha-\cos\alpha\)
Cho tan \(\alpha\)=\(\frac{3}{5}\). Tính
A= \(\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
B=\(\frac{\sin\alpha\cdot\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
C=\(\frac{\sin^3\alpha\cdot\cos^3\alpha}{2\sin\alpha\cdot\cos^2\alpha+\cos\alpha\cdot\sin^2\alpha}\)
Giúp mình với . MÌnh cảm ơn