a) \(\frac{1}{9}x^4-2x^2y+9y^2=\left(\frac{1}{3}\right)^2\left(x^2\right)^2-2x^2y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\frac{1}{3}x^23y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
\(\frac{1}{9}x^4-2x^2y+9y^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\times\frac{1}{3}x^2\times3y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
\(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2\times5x\times2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)