Áp dụng tính chất \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}\)
Ta có \(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-1\right)}{3+4}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-2\right)}{3+7}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< \frac{\left(-1\right)+\left(-3\right)}{3+10}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
Gọi số cần tìm là a
Ta có : \(\frac{-1}{3}< a< \frac{-1}{4}\)
\(\frac{-16}{48}< a< \frac{-12}{48}\)
\(\Rightarrow a\in\left\{\frac{-5}{16};\frac{-7}{24};\frac{-13}{48}\right\}\)
\(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)
3 số hữu tỉ là:
\(-\frac{4}{15};-\frac{3}{10};-\frac{19}{60}\)
-1/3 < -4/13 < -3/10 < -2/7 < -1/4