Vẽ đồ thị các hàm số :
a ) \(y=\hept{\begin{cases}2x\forall x\ge0\\x\forall x< 0\end{cases}}\)
b ) \(y=\hept{\begin{cases}2x\forall x\ge0\\-\frac{1}{2}x\forall x< 0\end{cases}}\)
Vẽ đồ thị hàm số
y=\(\hept{\begin{cases}2x;x\ge0\\x;x< 0\end{cases}}\)
Cho hàm số f=\(\hept{\begin{cases}2x;x\ge0\\\frac{-1}{2}x;x< 0\end{cases}}\)
Vẽ đồ thị hàm số khi xác định 2 điểm A;B
Chứng minh tam giác OAB vuông tại O
Vẽ đồ thị hàm số:
\(y=\hept{\begin{cases}2x\left(x\ge0\right)\\-\frac{1}{2}\left(-2< x< 0\right)\\1\left(x\le-2\right)\end{cases}}\)
CÁC BẠN NHỚ GHI CẢ CÁCH VẼ NHA! CẢM ƠN
CÁC BẠN LÀM NHANH GIÚP MÌNH VỚI MAI MÌNH KIỂM TRA RỒI !
Gởi bn Trân
a. Nếu x \(\ge\)0 suy ra x =1 ( thõa mãn)
Nếu x < 0 suy ra x = -3 ( thõa mãn)
b. \(\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\Rightarrow\hept{\begin{cases}y=1\\x-3=6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-1\\x-3=-6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=2\\x-3=3\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-3\\x-3=-2\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=6\\x-3=1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-6\\x-3=-1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-2\\x-3=-3\end{cases}}\)
; hoặc \(\hept{\begin{cases}y=3\\x-3=2\end{cases}}\)
Từ đó ta có các cặp (x;y) là (9;1); (-3,-1); (6,2); (0,2); (5,3); (1,-3); (4,6); (2,-6)
c. Từ 2x = 3y và 5x = 7z biến đổi về \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{89}=\frac{5z}{50}=\frac{3x-7y+5z}{63-89+50}=\frac{30}{15}=\frac{2}{1}=2\)
\(\rightarrow\)x=42; y=28; z=20
\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\) vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\) nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)
*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)
Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)
Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :
Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể là \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\)
Lí do : Vì x không thể nhận đồng thời 2 giá trị 5 và -5
Nói tóm lại là : Dấu "và" là để biểu thị còn dấu "hoặc" là để chia trường hợp
Ví dụ khác :
Giải phương trình : \(\left|2x+1\right|=5\)
Ta có : \(\left|2x+1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy x = 2 HOẶC x = -3
Trong trường hợp này không thể dùng dấu "và" vì nếu dùng dấu "và" thì x nhận đồng thời cả 2 giá trị 2 và -3. Điều đó là vô lí !
Nếu muốn các bạn có thể hỏi trực tiếp giáo viên!
P/: mình từng thấy một vụ cãi vã về việc dùng dấu "và" và dấu "hoặc" nên mình làm bài này để giúp mọi người hiểu rõ hơn !
1,cho hàm số y=f(x)=\(\hept{\begin{cases}x+1voix>=0\\-x-1voix< 1\end{cases}}\)
a,viết biểu thức xác định f(x)
b,tìm x khi f(x)=2
Cho hàm số f(x)=\(\hept{\begin{cases}-2x+7,x< 5\\x+9,x\ge5\end{cases}}\).Khi đó f(3)=