(H.90) Ta có hai hàm số tương ứng là: y = x 2 – 3x + 3 và y = x
Vậy
(H.90) Ta có hai hàm số tương ứng là: y = x 2 – 3x + 3 và y = x
Vậy
Trên mặt phẳng tọa độ Oxy, cho phần hình phẳng được tô đậm như hình bên được giới hạn bởi một đồ thị hàm số bậc ba đa thức và một đường thẳng. Diện tích S của phần tô đậm đó bằng bao nhiêu?
A. S = 8
B. S = 6
C. S = 2
D. S = 4
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = x 3 , trục hoành và hai đường x=-1, x=2, biết rằng mỗi đơn vị dài trên các trục tọa độ là 2cm.
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a; x = b Diện tích S của hình phẳng D được tính theo công thức
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x - 1 x + 1 và các trục tọa độ. Khi đó giá trị của S bằng
A. S = ln2 - 1 (đvdt)
B. S = 2ln2 - 1 (đvdt)
C. S = 2ln2 + 1 (đvdt)
D. S = ln2 + 1 (đvdt)
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Cho hàm số y=f( x) = ax3+ bx2+ cx+ d có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y= -9 tại điểm có hoành độ dương và đồ thị hàm số y= f’ ( x) cho bởi hình vẽ bên. Tìm phần nguyên của giá trị diện tích hình phẳng giới hạn bởi đồ thị (C) và trục hoành?
A. 2.
B. 27.
C. 29.
D. 35.
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b. Diện tích hình phẳng D được tính bởi công thức.
Cho hàm số y = f(x) và = g(x) liên tục trên đoạn [a;b]. Diện tích của hình phẳng giới hạn bởi đồ thị các hàm số y= f(x), y = g(x) và hai đường thẳng x = a, x = b (a < b) được tính theo công thức:
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5