Xét phép thử tung con súc sắc 6 mặt hai lần. Cho các biến cố:
A: “Số chấm xuất hiện ở cả hai lần tung giống nhau”
B: “ Tổng số chấm xuất hiện ở hai lần tung chia hết cho 3”
Tính Ω A + Ω B ?
A. 18
B.12
C. 16
D.20
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Gieo một súc sắc 3 lần
b) tính xác suất để tổng số chấm ba lần xuất hiện bằng 6:
A. 10/216
B. 91/216
C. 7/216
D. 25/72
Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất để 1) lần thứ nhất được số chấm chẵn và lần thứ hai được số chấm lẻ. 2) hai lần gieo có số chấm như nhau. 3) mặt 6 chấm xuất hiện ít nhất một lần. 4) tổng số chấm xuất hiện trong hai lần gieo bé hơn 10.
Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó:
b) Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là:
A. 25/216
B. 1/8
C. 1/6
D. 1/3
Gieo 3 con súc sắc cân đối, đông chất và quan sát số chấm xuất hiện. Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 10 là:
A. 1/36
B.1/8
C.1/6
D.1/3
Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình 1 2 x 2 + 6 x + m = 0 có hai nghiệm phân biệt.
A . 28 36
B . 24 36
C . 17 36
D . 26 36
Gieo hai con súc sắc cân đối. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc là 7?
A. 1/12
B. 1/6
C. 1/7
D. 5/36
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó blà số chấm xuất hiện trong lần gieo đầu, clà số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình có nghiệm.
A. 19 36
B. 1 18
C. 1 2
D. 17 36