\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\) (Đpcm)
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)
=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\) (Đpcm)
\(Cho\) \(\frac{a}{b}=\frac{c}{d}\)
\(CMR:\)\(a,\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
\(b,\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
CMR:
từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ta suy ra được \(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\)Chứng Minh: \(\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5a-2d}\)
Áp dụng cho . \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng\(\frac{3a-2b}{5a-7b}=\frac{3c+2d}{5c+5d}\)
MÌNH ĐANG CẦN GẤP LẮM , GIÚP MÌNH NHA
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng \(\frac{3a-2b}{3a-7b}=\frac{3c+2d}{5a+5d}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR: \(\frac{4a-2b}{5a+2b}=\frac{4c-2d}{5c+2d}\)
cho \(\frac{a}{b}=\frac{c}{d}\)(b,d khác 0)
\(\frac{2a+b}{2a-b}=\frac{2c+d}{2c-d}\)
\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
Cho tỉ lệ thức:\(\frac{a}{b}\)=\(\frac{c}{d}\)Chứng minh rằng:\(\frac{3a-2b}{3a+2b}\)=\(\frac{3c-2d}{3c+2d}\)(Giả sử các tỉ lệ thức đều có nghĩa)
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\). CMR:
a)\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b)\(\frac{ac}{ba}=\frac{\left(a+c\right)^2}{\left(b+a\right)^2}\)