#)Giải :
Áp dụng tính chất tỉ lệ thức, ta có :
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tc dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng tính chất tỉ lệ thúc ta có:
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tĩ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
ta có: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(ĐPCM\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(=\frac{k+1}{k-1}\right)\left(ĐPCM\right)\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}=\frac{a+c}{b+d}\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(a khác b,-b và c khác d, -d)
Vậy...