Tứ giác ABCD có 2 góc đối \(\widehat{A}+\widehat{C}=180^o\)
E là giao điểm của AD và BC. F là giao điểm của AB và CD . Tia phân giác của góc E cắt AB và CD ở M và N . Tia phân giác của góc F cắt AD và BC ở H và K . CHứng minh răng : MHNK là hình thoi .
tứ giác ABCD có góc A bằng góc C và bằng 90 độ. Các tia phân giác của DA và CB cắt nhau tại E, các tia phân giác của AB và CD cắt nhau tại F.
a/ chứng minh góc E bằng góc F ( phần này mình tự làm đc rồi)
b/Phân giác của góc E cắt AB, CD lần lượt ở G và H. Phân giác của góc F cắt BC, AD theo thứ tự ở I và K. Chứng minh GKHI là hình thoi
Cho tứ giác ABCD có góc A = góc C =90 độ , các tia DA và CB cắt nhau tại E, các tia AB và CD cắt nhau tại F
a, c/m góc E = góc F
b, tia phân giác của góc E cắt AB, CD theo thứ tự ở G và H. Tia phân giác của góc F cắt BC, AD theo thứ tự ở I và K. C/m GHIK là hình thoi
giúp mk vs
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
Cho tứ giác ABCD có góc A = góc C = 90 độ, các tia DA, CB cắt nhau tại E, các tia AB,CD cắt nhau tại F
a ) Chứng minh góc E = góc F
b ) Tia phân giác của góc E cắt AB,CD tại G và H
Tia phân giác của góc F cắt BC,AD theo thứ tự tại I và K. Chứng minh GHKI là hình thoi.
Hình thang ABCD(AB//CD) có AB=a, BC=b, CD=c, AD=d. các tia phân giác góc A và D cắt nhau tại E. các tia phân giác góc B và góc C cắt nhau tại F. gọi M, N là trung điểm của AD, BC. a. Chứng minh tam giác AED vuông. b. Chứng minh rằng nếu E trùng với F thì a+b=c+d.
Cho tứ giác ABCD có E là giao điểm của hai đường thẳng AB và CD; F là giao điểm của hai đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau tại F. Chứng minh rằng:
a) Nếu góc BAD= 130 độ; góc BCD= 50 độ thì IE vuông góc với IF
b) Góc EIF bằng nửa tổng của 1 trong 2 cặp góc đối của tứ giác ABCD
cho tứ giác ABCD, E là giao điểm của AB và CD. F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh rằng : nếu góc BAD=130^o, góc BCD=50^o thì IE song song với IF
Cho tứ giác ABCD có góc A = góc C = 90 độ , các tia DA và CB cắt nhau tại E , các tia AB và DC cắt nhau tại F
a, C/m E = F
b, Tia phân giác của góc E cắt AB ,CD theo thứ tự ở G và H . Tia phân giác của góc F cắt BC ,AD theo thứ tự ở I và K . Chứng minh GKHI là hình thoi