Từ điểm A nằm ngoài (O) dựng các tiếp tuyến AB,AC tới dg tròn và cát tuyến ADE (B thuộc cung nhỏ DE;D nằm giữa A và E ). Đường thẳng qua D vg với OB cắt BC,BE lần lượt tại H,K . vẽ OI vg với AE tại I . GỌI P là giao của AO và BC
a) chứng minh tứ giác AIOC nội tiếp
b) chứng minh AD.AE=AP.AO
c) chứng minh KDI =BAE và tứ giác IHDC nội tiếp
d) kẻ dây EN//BC chứng minh 3 điểm D,P,N thẳng hàng
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Từ điểm A nằm ngoài đường tròn (O) , kẻ 2 tiếp tuyến AB và AC ( BC là tiếp điểm ) . Trên nửa mp bờ là đường thằng AO chứa điểm B vẽ cát tuyến AMN với đường tròn (O) ( AM < AN ) , Mn không đi qua tâm O ) . Gọi I là trung điểm của MN
a) CHứng minh t/g AIOC nội tiếp
b) Gọi H là giao điểm của AO và BC
Chứng minh : AH . AO = AM . AN và t/g MNOC nội tiếp
c) Qua M kẻ đường thẳng song song Bn cắt AB và BC theo thứ tự tại E và F . Chứng minh M là trung điểm của EF
Cho điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE tới đường tròn (B,C là hai tiếp điểm;D nằm giữa A&E).Gọi H là giao điểm của AO và BC
a,Chứng minh rằng :ABOC là tứ giác nội tiếp
b,Chứng minh rằng :AH.AO=AD.AE
c,Tiếp tuyến tại D của đường tròn (O)cắt AB,AC theo thứ tự tại I và K.Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q.Chứng minh rằng IP+KQ>=PQ
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Từ điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là hai tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D, E thuộc đường tròn (O) và D nằm giữa A, E. Chứng minh AB 2 =AD.AE .
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Từ một điểm A nằm ngoài đường tròn (O,R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a)CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
cho điểm A nằm ngoài đường tròn (O). Qua A kẻ tiếp tuyến AB và AC với (O), ( B,C là tiếp điểm). Kẻ cát tuyến AMN với (O), (M nằm giữa A và N)
a) Chứng minh AB2 = AM. AN
b) Gọi H là giao điểm của AO và BC. Chứng minh : AH.AO= AM. AN
c) Đoạn AO cắt (O) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác ABC