Câu 4:( 4 điểm ) Từ điểm M nằm ngoài đường tròn ( O,R ) sao cho OM = 3R, vẽ các tiếp tuyến MA, MB với đường tròn ( O,R ) (A, B là các tiếp điểm). a ) Chứng minh: Tứ giác MAOB nội tiếp và OM là đường trung trực của đoạn AB. b ) Tính độ dài đoạn thẳng MA, AB theo R. c) Vẽ dây AC song song MB, đường thẳng MC cắt đường tròn (O,R) tại điểm thứ hai là D, tia AD cắt MB tại E. Chứng minh: E là trung điểm của đoạn MB
Từ điểm M nằm ngoài đường tròn ( O,R ) sao cho OM = 3R, vẽ các tiếp tuyến MA, MB với đường tròn ( O,R ) (A, B là các tiếp điểm).
a ) Chứng minh: Tứ giác MAOB nội tiếp và OM là đường trung trực của đoạn AB.
b ) Tính độ dài đoạn thẳng MA, AB theo R.
c) Vẽ dây AC song song MB, đường thẳng MC cắt đường tròn (O,R) tại điểm thứ hai là D, tia AD cắt MB tại E. Chứng minh: E là trung điểm của đoạn MB.(giúp mình con này)
Từ điểm M nằm ngoài đường tròn (O;R) sao cho OM=3R, vẽ các tiếp tuyến MA, MB với đường tròn (O;R) (A,B là các tiếp điểm
a) CM: tứ giác MAOB nội tiếp và OM là đường trung trực của đoạn AB
b) Tính độ dài đoạn thẳng MA, AB theo R
c) Vẽ dây AC song song MB, đường thẳng MC cắt đường tròn (O;R) tại điểm thứ hai là D, tia AD cắt MB tại E. Chứng minh: E là trung điểm của đoạn MB (các bạn ráng giúp mình câu c này nha)
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn(O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh: BD ⊥ AC và AB2 = AD.AC
b) Từ C vẽ dây CE // OA; BE cắt OA tại H. Chứng minh H là trung điểm của BE và AE là tiếp tuyến của đường tròn (O)
c) Chứng minh góc OCH = góc OAC.
d) Tia OA cắt đường tròn (O) tại F. Chứng minh FA.CH = HF.CA
BÀI 1:cho tam giác ABC (AB<AC; góc BAC>90). gọi I,K theo thứ tự là trung điểm AB,AC. hai đường tròn (I),(K) đường kính AB,AC cắt nhau tại điểm thứ hai D. tia BA cắt đường tròn (K) tại điểm thứ hai E, tia CA cắt đường tròn (i) tại điểm thứ hai F. chứng minh: a, ba điểm B,C,D thẳng hàng. b, tứ giác BFEC nội tiếp c, AD,BF,CE đồng qui d, tia DA là phân giác góc EDC
BÀI 2: Từ điểm M nằm ngoài đường tròn(0;R) vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD. gọi I là trung điểm CD, gọi E,F,K lần lượt là giao điểm của đường thẳng AB với MO, MD, OI. chứng minh: a, R= OE.OM= OI.OK B, chứng minh M,A,B,O,I nằm trên một đường tròn
Bài 1: Cho đường tròn (O) và điểm M ở ngoài đường tròn. Từ M kẻ tiếp tuyến MA,MB với đường tròn (A,B là tiếp điểm ), tia OM cắt đường tròn tại C, tiếp tuyến tại C cắt tiếp tuyến MA,MB tại P và Q. Chứng minh rằng diện tích tam giác MPQ lớn hơn một nửa diện tích tam giác ABC.
Bài 2: Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ nửa đường tròn (O) đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc một nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By theo thứ tự tại C và D. Gọi N là giao điểm của AD và BC. CMR: MN vuông góc với AB