Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
câu 1 :
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. CMR:
a, AH ⊥ BE
câu 2 :
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
a) tính góc MIC
b)DN là tiếp tuyến của (O;R)
c)F thuộc (O)
Từ một điểm A nằm ngoài đường tròn (0,R)ta vẽ hai tiếp tuyến AB,AC với đường tròn (B,C là tiếp tuyến ).Trên cung nhỏ BC lấy một điểm M.Gọi I,K,P lần lượt là hình chiếu vuông góc của M lên các cạnh AB,AC,BC. Gọi H là hình chiếu của O trên BC
a) Chứng minh MPCK là tứ giác nội tiếp đường tròn
[CÓ HÌNH VẼ NHA]
Cho đường tròn tâm O bán kính R điểm A nằm ngoài đường trong tâm O sao cho AO=2R. từ A vẽ 2 tiếp tuyến AB,AC với đường tròn (BC là các tiếp điểm) đoạn thẳng OA cắt đường tròn tâm O tại I đường thẳng qua O và vuông góc với OB cắt AC tại K.Chứng minh rằng: a, Tam giác OAK cân tại A b,KI là tiếp tuyến của đường tròn tâm O
cho đường tròn (O,R=2012 cm) và A ở ngoài (O). vẽ các tiếp tuyến AB ,AC của (O), (B,C là tiếp điểm). Lay61 M trên cung nhỏ BC, vẽ tiep1 tuyến của (O) qua M cắt AB, AC thứ tự tại S, E.
Tính chu vi tam giác ADE biết góc BAC=84 độ
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
Cho đường tròn (O,R) và điểm A nằm ngoài đường tròn O vẽ tiếp tuyến AB của đường tròn (O).Vẽ dây cung BC của đường tròn O vuông góc OA tại H
a,Cm AC là tiếp tuyến (O)
b,Với OA=2R.Tính góc ABC
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn. Từ A vẽ tiếp tuyến AB, AC với đường tròn (O) với B, C là các tiếp điểm. Gọi giao điểm của BC và OA là I. Kẻ đường kính BD. Đường thẳng vuông góc với BD tại O cắt đường thẳng BC tại K. Chứng minh
a. Bốn điểm A, B, O, C cùng thuộc một đường tròn.
b. DC//OA.
c. Giả sử AB = 20cm. BC = 12cm. Tính bán kính R của đường tròn.
d. IK.IC + OI.IA = R2.
Cho đường tròn (O;R). Điểm A nằm ngoài đường tròn sao cho OA=2R. Từ A kẻ 2 tiếp tuyến AB, AC với đường tròn , cát tuyến ADE
a, CMR: 4 điểm A,B,O,C nằm trên 1 đường tròn
b, Gọi H là giao điểm của BC và AO. Tính AH, HO
c,Từ O kẻ đường thẳng vuông góc với AO cắt AB tại P, cắt AC tại Q. Kẻ tiếp tuyến tại d cắt AB tại I, cắt AC tại K. CMR: IP + KQ >= PQ
hóng thánh làm giúp, mình sắp nộp rồi