Trục căn thức ở mẫu và rút gọn:
a) \(\frac{20}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
b) \(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2.\sqrt{3+2\sqrt{5}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
giúp mik vs
trục căn thức ở mẫu
\(\frac{1\sqrt{2}}{\sqrt{2}.\sqrt{2}}\) \(\frac{1\sqrt[]{3}}{\sqrt{3}.\sqrt{3}}\)\(\frac{2\sqrt{5}-5}{\sqrt{5}-2}\)\(\frac{6-2\sqrt{6}}{2-\sqrt{6}}\)\(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}\)\(\frac{1}{\sqrt{5}-1}\)\(\frac{1}{4-2\sqrt{a}+a}\)\(\frac{1}{b-2\sqrt{b}+4}\)\(\frac{1}{b-3\sqrt{b}+9}\)
Đưa thừa số ra ngoài dấu căn
a) \(6\left(\sqrt{15}-4\right)\sqrt{\frac{31+8\sqrt{15}}{12}}\)
b) \(\frac{2+2\sqrt{5}}{3-\sqrt{5}}\sqrt{\frac{24-8\sqrt{5}}{3+3\sqrt{5}}}\)
_Trục căn thức ở mẫu
c) \(\frac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Giúp mình với, mình đang cần gấp
Trục căn thức ở mẫu các biểu thức sau:
\(a,\frac{2\sqrt{10}-5}{4-\sqrt{10}}\)
\(b,\frac{9-2\sqrt{2}}{3\sqrt{6}-2\sqrt{2}}\)
Bài 1: Tìm điều kiện xác đinh của các biểu thức sau
a, A=\(\frac{x-1}{\sqrt{x-1}}+\sqrt{2x+5}\)
b, B=\(\frac{\sqrt{-x}}{x^2-3}-2019\)
Bài 2: Rút gọn
a, A=\(\frac{15-9\sqrt{2}}{5\sqrt{5}-3\sqrt{10}}-\sqrt{\frac{16}{5}}-\frac{1}{\sqrt{10}+\sqrt{5}}\)
b, B=\(\frac{\sqrt{145\sqrt{154}}-\sqrt{9-\sqrt{77}}}{1-\frac{1}{\sqrt{2}}}\)
Bài 1 Rút gọn và tính
a, \(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\)với a=7.25;b=3.25
b,\(\sqrt{15\text{a}^2-8\text{a}\sqrt{15}+16}\) với \(a=\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)
c,\(\sqrt{10\text{a}^2-4\text{a}\sqrt{10}+4}\)với \(a=\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
d,\(\sqrt{a^2+2\text{a}\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}v\text{ới}\)\(a=\sqrt{5}\)
a) \(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
b) \(B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}+\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
Giúp mình với dang cần gấp
Chứng minh các đẳng thức sau
a) \(\left(\frac{2\sqrt{6}-\sqrt{3}}{2\sqrt{2}-1}+\frac{5+2\sqrt{5}}{2+\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
b) \(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=-a\)(Với b<a<0
c)\(\left(\sqrt{a}+\frac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)với a\(\ge0\),a khác 1
d) \(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right)40\sqrt{15}=600\)
e) \(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)với x\(\ge0;x\ne1\)
1. RÚT GỌN BIỂU THỨC
a. \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
b. \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
c. \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
d. \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
e. \(\frac{-3\sqrt{3}+3}{2\sqrt{3}-2}\)