Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc tọa độ O, các đỉnh B (m; 0; 0), D (0; m; 0), A’ (0; 0; n) với m, n > 0 và m + n = 4. Gọi M là trung điểm của cạnh CC’. Khi đó thể tích tứ diện BDA’M đạt giá trị lớn nhất bằng:
A. 245/108
B. 9/4
C. 64/27
D. 75/32
Trong không gian với hệ tọa độ Oxy, cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc tọa độ O, các đỉnh B(m; 0; 0), D(0; m; 0), A'(0; 0;n) với m, n>0 và m+n=4. Gọi M là trung điểm của cạnh CC'. Khi đó thể tích tứ diện BDA'M đạt giá trị lớn nhất bằng:
A. 245 108
B. 9 4
C. 64 27
D. 75 32
Trong không gian Oxyz, cho hai mặt cầu ( S 1 ) : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z + 2 = 0 và ( S 2 ) : x 2 + y 2 + z 2 - 2 x + 4 y - 2 z - 4 = 0 . Xét tứ diện ABCD có hai đỉnh A, B nằm trên S1; hai đỉnh C,D nằm trên S2. Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng
A. 3 2
B. 2 3
C. 6 3
D. 6 2
Hình hộp chữ nhật ABCD.A'B'C'D' có AC = 3 a; AB' = 2a; AD' = 5 a (a > 0). Tính thể tích tứ diện ABDA'.
A. V = a 3 6
B. V = a 3 15 3
C. V = a 3 2 3
D. V = a 3 3
Tìm các mặt phẳng đối xứng của các hình sau đây : a) Hình chóp tứ giác đều ; b) Hình chóp cụt tam giác đều ; c) Hình hộp chữ nhật mà không có mặt nào là hình vuông.
Trong Oxyz cho A(0; 2; 0); C(2; 0; 0); O’(0; 0; 3). Khi đó hình hộp OABC.O’A’B’C’ có bao nhiêu mặt phẳng đối xứng?
Trong mặt phẳng tọa độ, cho hình chữ nhật (H) có một cạnh nằm trên trục hoành, và có hai đỉnh trên một đường chéo là A (-1; 0) và C ( m ; m ) , với m > 0. Biết rằng đồ thị hàm số y= x chia hình (H) thành hai phần có diện tích bằng nhau, tìm m .
Cho tứ diện ABCD, hỏi có bao nhiêu véctơ khác véctơ 0 ⇀ mà mỗi véctơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD
A. 4.
B. 12.
C. 10.
D. 8.
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0; 4), D(4; 0; 6) Hãy viết phương trình của các mặt phẳng (ACD) và (BCD)