Trong mặt phẳng tọa độ Oxy cho đường thằng d có phương trình 2x + y + 3 = 0. Phương trình đường thẳng d' là ảnh của đường thẳng d qua phép đối xứng trục Ox là
A. y - 2x + 3 = 0
B. -2y + x + 3 = 0
C. 2y + x + 3 = 0
D. 2y - x + 3 = 0
Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình x 2 + y 2 − 2 x + 4 y – 4 = 0 . Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x − 2y – 6 = 0
a) Viết phương trình của đường thẳng d 1 là ảnh của d qua phép đối xứng qua trục Oy
b) Viết phương trình của đường thẳng d 2 là ảnh của d qua phép đối xứng qua đường thẳng Δ có phương trình x + y – 2 = 0 .
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x-2y+2=0 và đường thằng l có phương trình : x - y + 1 = 0. Phép đối xứng trục l biến d thành d’ có phương trình
A. 2x - y - 1 = 0
B. 2x - y + 1 = 0
C. 2x + y + 1 = 0
D. 2x + y - 1 = 0
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;3) và đường thẳng d có phương trình x – 2 y + 3 = 0 . Tìm ảnh của A và d qua phép đối xứng tâm O.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x - 2y + 2 = 0; đường thẳng d’ có phương trình x - 2y - 8 = 0. Tìm tọa độ điểm I sao cho phép đối xứng tâm I biến d thành d’ đồng thời biến trục Oy thành chính nó.
A. I(-2;0)
B. I(8;0)
C. I(-3/2;0)
D. I(0; -3/2)
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình: x − 2y + 2 = 0 và d đường thẳng có phương trình: x − 2y – 8 = 0. Tìm phép đối xứng tâm biến d thành d’ và biến trục Ox thành chính nó.
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0, tìm phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I(1;2).
A. x+y+4=0
B. x+y-4=0
C. x-y+4=0
D. x-y-4=0
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.