Trong mặt phẳng (ABCD) gọi AC giao BD tại I
Một điểm chung của hai mặt phẳng (SAC) và (SBD) khác điểm S là điểm I
I ∈ AC ⊂ (SAC)
I ∈ BD ⊂ (SBD)
Trong mặt phẳng (ABCD) gọi AC giao BD tại I
Một điểm chung của hai mặt phẳng (SAC) và (SBD) khác điểm S là điểm I
I ∈ AC ⊂ (SAC)
I ∈ BD ⊂ (SBD)
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Xác định giao tuyến của hai mặt phẳng (SAD) và (CMN) là:
A. NI
B. MJ
C. NJ
D. MI
Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành tâm O. Gọi M là trung điềm SB và N là điểm trên cạnh SA sao cho SN=2SA.
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD)
b) Tìm giao điểm H của AD với mặt phẳng (OMN), giao điểm K của BC với mặt phẳng (OMN)
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (OMN).
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mặt phẳng (P). Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O; giao điểm của hai đường thẳng CM và SO là I; giao điểm của hai đường thẳng NI và SD là J. Tìm giao điểm của mp(CMN) với đường thẳng SO là:
A. A
B. J
C. I
D. B
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là một điểm trên cạnh SC và (a) là mặt phẳng chứa AM và song song với BD. a. Tìm giao tuyến của hai mặt phăng (SAC) và (SBD) ? b. Tìm các giao điểm E, F của mặt phẳng (a) lần lượt với các cạnh SB, SD.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và M là trung điểm của SD.
a, tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b, chứng minh rằng MO song song với mặt phẳng (SAD).
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình bình hành; M, N lần lượt là trung điểm của (SB, SD) a) Chứng minh đường thẳng BD song song với mặt phẳng (AMN) b) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). Tìm giao điểm của đường thẳng MN và mặt phẳng (SAC)
Trên mặt phẳng (α) cho hình bình hành ABCD tâm O. Gọi S là một điểm nằm ngoài mặt phẳng (α) sao cho SA = SC, SB = SD. Chứng minh rằng:
a) SO ⊥(α)
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH).
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M là trung điểm của đoạn AB, E là giao điểm của hai cạnh của hình thang ABCD và G là trọng tâm của tam giác ECD.
(a) Chứng minh rằng bốn điểm S, E, M, G cùng thuộc một mặt phẳng (α) và mặt phẳng này cắt cả hai mặt phẳng (SAC) và (SBD) theo cùng một giao tuyến d.
(b) Xác định giao tuyến của hai mặt phẳng (SAD) và (SBC).
(c) Lấy một điểm K trên đoạn SE và gọi C' = SC ∩KB, D'=SD ∩KA. Chứng minh rằng hai giao điểm của AC' và BD' thuộc đường thẳng d nói trên.
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều. Gọi I là điểm di động trên đoạn AC với AI = x (0 < 0 < a). Lấy là mặt phẳng đi qua I và song song với mặt phẳng (SBD).
a) Xác định thiết diện của mặt phẳng với hình chóp S.ABCD.
b) Tìm diện tích S của thiết diện ở câu a) theo a, b, x. Tìm x để S lớn nhất.